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Abstract
In the past years, many attempts have been made in order to model the process of bone remodeling. This process is complex, 
as it is governed by not yet completely understood biomechanical coupled phenomena. It is well known that bone tissue is 
able to self-adapt to different environmental demands of both mechanical and biological origin. The mechanical aspects 
are related to the functional purpose of the bone tissue, i.e., to provide support to the body and protection for the vitally 
important organs in response to the external loads. The many biological aspects include the process of oxygen and nutrients 
supply. To describe the biomechanical process of functional adaptation of bone tissue, the approach commonly adopted is 
to consider it as a ‘feedback’ control regulated by the bone cells, namely osteoblasts and osteoclasts. They are responsible 
for bone synthesis and resorption, respectively, while osteocytes are in charge of ‘sensing’ the mechanical status of the tis-
sue. Within this framework, in  Lekszycki and dell’Isola (ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik 
92(6):426–444, 2012), a model based on a system of integro-differential equations was introduced aiming to predict the 
evolution of the process of remodeling in surgically reconstructed bones. The main idea in the aforementioned model was 
to introduce a scalar field, describing the biological stimulus regulating the interaction among all kinds of bone cells at a 
macroscale. This biological field was assumed to depend locally on certain deformation measures of the (reconstructed) 
bone tissue. However, biological knowledge suggests that this stimulus, after having been produced, ‘diffuses’ in bone tis-
sue, so controlling in a complex way its remodeling. This means that the cells which are target of the stimulus may not be 
located in the same place occupied by the cells producing it. In this paper, we propose a model which intends to explain the 
diffusive nature of the biological stimulus to encompass the time-dependent and space–time displaced effects involved in 
bone reconstruction process. Preliminary numerical simulations performed in typical cases are presented. These numerical 
case studies suggest that the ‘diffusive’ model of stimulus is promising: we plan to continue these kinds of studies in further 
investigations.
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1  Introduction

One of the most challenging endeavors in contemporary 
applied mathematics concerns the formulation of mathemat-
ical models for the growth and possibly for the resorption 

of soft and hard biological tissues, in one word, for their 
remodeling. In this paper, we will focus on the particular 
case of bone tissues, even if we believe that there are many 
common features with other kinds of tissues. Therefore, we 
expect that our results may be applicable also in slightly 
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different contexts. Growth and remodeling phenomena are, 
indeed, very complex. They involve physical, chemical and 
mechanical coupled interactions and can be regarded as 
emerging subjects in continuum physics and biomechanics 
(see, e.g., Prakash et al. 2018; Ganghoffer 2012; Taber 2009; 
Holzapfel and Ogden 2006; Cowin 2001).

In the framework of continuous field models, various 
proposals were formulated to model aforementioned cou-
pled interactions, always aiming to capture the most rel-
evant aspects of mechanically driven living tissue growth 
and reconstruction. To our knowledge in the present litera-
ture, it is systematically assumed that the biological stimu-
lus remains localized where it has been produced. In other 
words, if one has introduced the concept of a material parti-
cle of the continuum describing the tissue, then the biologi-
cal stimulus as perceived in one material particle depends 
on the deformation field as measured in the same material 
particle. A first generalization has been proposed in Lek-
szycki and dell’Isola (2012), Kumar et al. (2011), Andreaus 
et al. (2014b), Giorgio et al. (2016): indeed, in cited papers 
the stimulus in a material particle depends on a space aver-
age (in the reference configuration) of the deformation in 
its neighborhood. This assumption seems more realistic but 
not completely satisfactory. Indeed, we are aware of the dif-
ficulties in understanding the true nature and relevant char-
acteristics of biological stimulus, which although plays such 
a prominent role in living tissue growth. The processes of 
stimulus formation, propagation and reception are surely 
not understood in a satisfactory way yet. However, it seems 
to us clear that (see, for instance, Kühl et al. 2000; Pinson 
et al. 2000; Gong et al. 2001) a part of the biological sig-
nal is produced by means of biochemical processes and that 
the produced biochemical factors which are the output of 
said processes are diffusing in the tissue whose growth and 
resorption they are controlling. Mathematical physics has 
already, and in different contexts, produced a model for this 
kind of diffusive phenomena. The natural choice is, there-
fore, to imagine that in the growth control process one can 
distinguish at least two different steps. In the first, one finds 
the generation of the biological signal in a certain material 
particle subject to a specific deformation state at a given 
time instant. In the second step, the signal diffuses in space 
with a certain speed (and possibly direction), thus regulating 
the remodeling of different material particles in subsequent 
instants.

While we believe that the described approach is not pre-
sent in the literature, we believe that it may contribute to the 
theoretical efforts needed to model growth phenomena. We 
are aware of the fact that simplification has to be searched, 
when possible, and that many interesting simpler models of 
continua in which growth occurs have been already proposed 
and carefully studied (see, e.g., George et al. 2018b; Clu-
zel and Allena 2018; Allena and Cluzel 2018; Goriely et al. 

2008; Menzel 2005; Di Carlo and Quiligotti 2002; Epstein 
and Maugin 2000).

Some continuum models have been imagined which intro-
duce generalized structured continua, as those involving the 
concept of mixtures (Franciosi et al. 2018; Spagnuolo et al. 
2017; Ambrosi et al. 2010; Ateshian 2007), or micropolar 
kinematical descriptors (Goda et al. 2014; Yoo and Jasiuk 
2006; Diebels and Steeb 2003; Park and Lakes 1986), see 
also (Eremeyev et al. 2016; Eremeyev and Pietraszkiewicz 
2016; Altenbach and Eremeyev 2015; Eremeyev et al. 2013), 
or deformation energies depending on the second gradient of 
placement (Giorgio et al. 2017a; Madeo et al. 2013, 2012; 
Seppecher 2000, 1996). It is natural to imagine that their 
use may be required to capture the most complex aspects 
of growing tissue biomechanics. In this paper, we will limit 
ourselves to consider, from the mechanical point of view, the 
simplest possible model, by focusing on the complications 
involved in considering a diffusive stimulus. We are confi-
dent that by uniting our present approach with generalized 
continuum models an important step toward the comprehen-
sion of tissue growth may be attained.

Indeed, we are aware of the impressive progress in 
modeling bone mechanics occurred in the last decades. 
In this paper, we exploit these results and we, therefore, 
have accepted systematically the following concepts and 
paradigms:

1.	 mechanical phenomena play a key role in bone tissue 
growth (Rosa et al. 2015; Hambli 2014);

2.	 the growth of living bone tissues is controlled by a spe-
cific agent which has been called biological stimulus: 
the biological stimulus in bone tissues is mechanically 
driven, regulates and controls the action of some special-
ized cells which are called osteoblasts (tissue producing 
cells) and osteoclasts (tissue destructing cells) (Beaupre 
et al. 1990b; Turner 1991; Mullender et al. 1994);

3.	 there must be a clear distinction between the process of 
stimulus generation and the signal processing preceding 
the stimulus generation (see Lekszycki and dell’Isola 
2012);

4.	 the driving phenomenon in signal production is defor-
mation, which can be modeled in a more or less sophisti-
cated way, with more or less complex continuum models 
(Giorgio et al. 2017a, 2016; Park and Lakes 1986; Ham-
bli and Kourta 2015);

5.	 the biological stimulus results into a variation of the 
mechanical properties of the bone (Frost 1987);

6.	 the deformation state of the tissue controls its biological 
activity and reactivity (Huiskes et al. 1987; Lekszycki 
and dell’Isola 2012).

Many investigations have been dedicated to the aim of under-
standing all phenomena involved in stimulus generation and 
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stimulus activity. Its production, propagation and effects on 
active or capable of being activated cells which are acting in 
bone remodeling process (see, e.g., Komori 2013; Bonewald 
and Johnson 2008; van Hove et al. 2009; Hambli and Rieger 
2012; Sansalone et al. 2013) have been intensively studied. 
At micro-level, it is possible to hypothesize that the intersti-
tial fluid flow through the lacuno-canalicular system plays an 
important role in the remodeling process (You et al. 2001) 
as well as the number of active cells (Rieger et al. 2011). 
Thus, a stimulus depending on the interstitial fluid velocity 
can be assumed as done in Hambli and Kourta (2015). We 
claim that these interesting results give us an understanding 
of what happens at smaller scales inside a growing bone.

We must explicitly warn the reader here: we do not even 
try to model the enormous complexity of growth processes 
which is observed at said cellular or lacuno-canalicular 
level: the length scale which we call here ‘micro-level’ or 
‘smaller scale.’ Instead, we are persuaded that at macro-
level, it is acceptable and even reasonable (see Chen et al. 
2005; Mlodzik 2002) to postulate that the generation of the 
biological stimulus and its eventual propagation are phe-
nomena which are not directly and explicitly related to spe-
cific aspects of biological or mechanical phenomena occur-
ring at the smaller scale. We look for a macro-model which 
is averaged enough to be able to capture the overall and 
global features of these micro-phenomena which we refrain 
to describe. This was the spirit which animated  Lekszycki 
and dell’Isola (2012), Giorgio et al. (2016) where the gov-
erning equations, used to describe the mechanically driven 
macroscopic growth phenomena, were postulated to be an 
integro-differential system incorporating the information of 
overall stimulus generation in the neighborhood of osteo-
clasts and osteoblasts (active cells) which are activated by 
the biological stimulus.

Actually, this approach does imply the concept of imme-
diate transmission of the biological signal as produced as a 
consequence of the action of sensor cells (osteocytes) to the 
‘active’ cells.

However, the proposed macro-model can be thought of 
as a target model in a micro-macrohomogenization process 
in the same spirit of Hambli and Kourta (2015). Besides, a 
multi-scale modeling approach may take into account the 
complex and hierarchical microstructure of the bone tissues 
(see, e.g., Rosa et al. 2015; Hambli et al. 2011; Barkaoui 
et al. 2014, 2016). To our knowledge, there is some bio-
logical evidence (Arias et al. 2018; Bonewald and Johnson 
2008; Kühl et al. 2000) and, we believe, there is a clear 
logical basis, of the fact that the biological stimulus is first 
produced and then diffused before reaching its target cells, 
i.e., the active cells governing growth and resorption. (see, 
e.g., George et al. 2017; Spingarn et al. 2017; Stern and 
Nicolella 2013; Himeno-Ando et al. 2012; Bonucci 2009). 
There is evidence, indeed, of the existence of mechanisms 

which govern the production of ‘signaling chemical species,’ 
of phenomena of diffusion of these species in the recon-
structing tissue and of their adsorption to initiate the activa-
tion of osteoclasts and osteoblasts.

In this paper, we cannot describe in a careful way all these 
complex and somehow obscure mechanisms. Therefore, we 
refrain to reach a detail of description which is valid at the 
smaller scale and limit ourselves to formulate a model which 
is (1) valid at macroscale, (2) accounting for the biological 
stimulus diffusion during the process of tissue remodeling 
and growth, (3) describing the diffusive time delay and space 
displacement phenomena which must be expected.

The simple ansatz which we accept is the following: at 
macro-level the biological stimulus diffuses in space and 
time by following the rule given by Fourier–Fick diffusion 
process, in which we postulate the presence of both sink and 
source terms. We further postulate that these source and sink 
terms can be determined by means of some specific constitu-
tive laws in which the mechanical deformation energy and 
the stimulus itself appear. By conjecturing the result of the 
previously evoked homogenization process, we assume that 
(1) the stimulus production (source) term depends on the 
local value of mechanical deformation energy, (2) the meta-
bolic action which leads to the degradation of the stimulus 
intensity (sink) is governed by a simple mechanism: this 
mechanism leads to a decay which is proportional to the 
local (in space and time) stimulus concentration.

We are aware that some local aspects of the microscopic 
biological complexity of considered system are completely 
neglected but we expect that, for what concerns the consid-
ered macroscopic averaged biomechanics quantities which 
we have included in our model, the postulated assumptions 
are descriptive of real phenomena. We are confident that the 
obtained macro-predictions are close to describing effec-
tively some overall biomechanics phenomena.

Referring to the wide and complex problem of the func-
tional adaptation of bone tissue subjected to mechanical 
loadings, therefore, aim of this paper is proposing a phe-
nomenological model at macroscale based on a description 
of bone tissue as a homogenized generalized continuum, and 
accounting for the evolution of the bone mass density due 
to the transmission of an activation signal from the sensor 
cells to the cells responsible of bone synthesis and resorp-
tion. In particular, the proposed model focuses on the macro-
level mechanism of the transmission of the signal through 
a diffusive way, which averagely and macroscopically rep-
resents the diffusion phenomena of the ‘signaling factors,’ 
and which occurs at microscale, relating the signal diffu-
sion with the macroscopic phenomenon of the remodeling 
process, or in other words relating biological phenomena 
with mechanical ones at continuum level. In addition, the 
proposed model has been formulated aiming at conceiving, 
designing and guiding feasible experimental tests able to 
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identify the constitutive parameters of the model, by meas-
uring observable quantities, which pertain to the evolution 
of the main global quantities interesting the present study, 
namely the mass density of bone tissue, beyond the analysis 
of diffusion of single signal factors at microscale.

To make meaningful the conceptual effort presented in 
this work, we prepared some numerical simulations per-
formed with COMSOL Multiphysics‸ . They are somehow 
preliminary, as they describe some meaningful, but aca-
demic, situations. They will be presented in full detail in 
the sequel. We believe that they prove that the model which 
we propose here is really promising and will deserve our 
future efforts to be developed and generalized.

2 � Basic kinematical fields and fundamental 
modeling assumptions

We start this section, devoted to the specification of the set 
of fields which describe the kinematics in the considered 
model, by remarking that if one wants to describe growth 
and resorption in living tissues one must assume that the ref-
erential mass density of every material particle may change 
in time. This observation must be extended to include also at 
least the variability, in time, of material symmetry group for 
each material particle, as remodeling can change its intrin-
sic mechanical properties. Referential mass density and the 
material symmetry group are changed by biological agents 
as a response to mechanical deformation induced by external 
loads. Indeed, mechanical deformation triggers the biologi-
cal actions of the designated cells which are present in the 
living tissue so that one can observe the establishment of a 
self-reorganization process (Roux 1895) in the living tissue.

It is useful to reinterpret the whole bone remodeling pro-
cess as a process controlled by robust feedback and to study 
it with the methods of the theory of control (see Frost 1987; 
Turner 1991).

In the remodeling process, the mechanical properties of 
the living tissue are to be regarded as the controlled quanti-
ties. On the other hand, the total mass of bone and its dis-
tribution at the lower scale must be considered as the con-
trolling quantities. In other words, we can assume that the 
change of total bone mass and of the macroscopic material 
symmetry group is changing because of the remodeling pro-
cess and as a consequence of the biological action triggered 
by the externally applied loads.

In fact, in order to supply the mechanical strength needed 
to resist to externally applied loads, some active cells, which 
can be regarded as the process ‘actuators,’ can be driven to 
resorb or to synthesize bone tissue. The observations made 
during the remodeling process indicate that the whole sys-
tem has efficient feedback which aims to obtain an optimized 
distribution of bone mass (and of its structure at the lower 

level) so that the most appropriate deformation pattern is 
maintained in the tissue. One can say that the bone micro-
structure and mass result from a ‘functional adaptation’ 
which is attained by a process of constrained optimization. 
Given the total amount of available mass, it has to be dis-
tributed in order to get the maximum of resistance with the 
minimum use of living tissue. Bone mass is costly and its 
cost has to be limited. However, too low bone mass leads 
to bone fragility and the consequent lack of functionality 
must be avoided. Together with osteoclasts and osteoblasts 
(the active cells adsorbing and constructing bone tissue), one 
finds in the living bone also another type of cells: osteocytes. 
They are sensors which detect the biological stimulus, i.e., 
the feedback signal in our scheme from the theory of control, 
which is a consequence of the current mechanical deforma-
tion state. This signal has to be compared with a certain 
threshold, i.e., a certain interval of set-point values for the 
stimulus. The difference (or as it is called in the theory of 
control: the error) between the measured stimulus and the 
threshold values is the biological ‘command’ used to initiate 
the action of actuator cells.

We summarize the whole previously described process in 
the feedback diagram presented in Fig. 1.

The analysis which we present in this paper for the bone 
remodeling process is based on the following limiting 
assumptions:

	 1.	 The model used for bone tissue is not sophisticated 
enough to distinguish among the different possible 
kinds of bone tissues: in other words, it is not distin-
guishing among woven, trabecular or compact bone 
tissue, etc. We are, however, aware of the fact that 
growth and resorption have different rates for said dif-
ferent kinds of bone tissues. On the other hand, we are 
persuaded that the described feedback control mecha-
nism has the same fundamental features in every bone 
tissue (Turner 1991).

	 2.	 We choose a unique characteristic time for the complex 
bone remodeling process: it is fixed to have a value in 
the interval 120–200 days. This choice is suggested 
by the fact that the longest period seems to be that 
characteristic of trabecular bone, while it is believed 
that this time interval gives the average duration of a 
complete and single turnover cycle (Agerbaek et al. 
1991; Eriksen 2010).

	 3.	 All kinds of bone tissue are assumed to be well 
described by the model given by a nonlinear elastic 
(Davy et al. 1999; Morgan et al. 2001) or viscoelastic 
(Gottesman and Hashin 1980) porous (Cowin 1999; 
Smit et al. 2002) material.

	 4.	 The material symmetry group and all other proper-
ties of these materials determined by the bone internal 
microstructure (Eremeyev and Pietraszkiewicz 2016) 
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are determined as a consequence of the action of only 
the three types of cells already described, that is osteo-
blasts, osteoclasts and osteocytes.

	 5.	 The osteoblast and osteoclast, i.e., the actor or actua-
tor cells, are the living entities which are determining 
the synthesis or the resorption of bone tissue, respec-
tively. Their activation is controlled by the biological 
stimulus. This stimulus is produced by the third kind of 
considered cells: the osteocytes, which are also called 
the sensor cells (Turner 1991; Katagiri and Takahashi 
2002; Matsuo and Irie 2008).

	 6.	 In fact, osteocytes are producing the ‘feedback sig-
nal,’ in our control process. It is assumed to be mainly 
produced as a response of the density of deformation 
energy. This assumption has been already discussed in 
the introduction, and it is based on the hypothesis that 
deformation energy can be regarded as a good macro-
scopic indicator of the microscopic mechanical state, 
which is reliable independently of the true nature of the 
more fundamental mechanism determining the osteo-
cytes response. This mechanism is being still debated 
and may not be unique (Aarden et al. 1994; Santos 
et al. 2009; Komori 2013; Graham et al. 2013). It is, 
however, unanimously accepted that osteocytes are 
organized in a network of cells interconnected each 
other by means of dendritic processes, namely protu-
berances, and they are completely surrounded by min-
eral bone and placed in appropriate cavities, namely 

lacunae and canaliculi (Burger and Klein-Nulend 
1999).

	 7.	 The quantity of osteocytes which are active in a sin-
gle ‘material particle’ of the used continuum model is 
related to the mass of the bone tissue present in a unit 
volume (Mullender et al. 1996; Baiotto and Zidi 2004). 
Moreover, when a certain material particle is in a cer-
tain state of deformation, the amount of signal inside 
the same material particle increases with the number 
of activated sensor cells.

	 8.	 We assume that the said increasing dependences are 
both linear: that is, the signal is proportional to the 
number of activated osteocytes and that the number of 
osteocytes is proportional to the bone mass density.

	 9.	 The intensity of the signal, as produced by some osteo-
cytes, decreases with the distance between actor cells 
and osteocytes (Mullender et al. 1994).

	10.	 The actuator cells receive all signals which reach them 
sent by surrounding sensor cells (Matsuo and Irie 
2008).

	11.	 The reference signal or the set point is assumed to 
be regulated by hormone activity or by the presence 
of oxygen and nutrients (Bednarczyk and Lekszycki 
2016; Lu and Lekszycki 2018).

	12.	 Living bone tissue can be resorbed or synthesized, 
because osteoblast and osteoclasts are always present 
together with osteocytes. However, the sensor cells can 
be located only in a real living tissue and not in artifi-
cial graft, and then in artificial grafts, the stimulus is 

FeedbackAcquired 
mechanical 
state

‘Error’ signal:

Biological
command

Current output:
mechanical properties

Control

Sensor network 

Osteoblasts 
and 

Osteoclasts

-

+ 

Osteocytes

Mechanical loads

Bone tissue

Reference input:

desired
mechanical
state

REMODELLING PROCESS 

Hormones,
nutrients,
oxygen

Fig. 1   A feedback control scheme to represent the biological activity involved in the remodeling process
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not produced and therefore; in the absence of stimu-
lus diffusion, the only activated cells are osteoclasts: 
as a consequence, artificial grafts can be resorbed at 
higher rates than living tissue (Lekszycki and dell’Isola 
2012).

	13.	 The density of actuator cells available in a material 
particle depends on the local value of porosity of (pos-
sibly reconstructed) bone tissue. If the bone tissue has 
a current value of its porosity which is close to the 
maximum possible, then the density of active osteo-
clasts or osteoblast is vanishing. Indeed, these cells can 
act only when they are deposited on the inner surface 
of the internal tissue pores. If the amount of surface 
available to the adhesion of actor cells is too small, 
neither resorption nor creation of bone tissue is pos-
sible. On the other hand, actuator cells are absent when 
the porosity is vanishing: in fact, in this case, there is 
no space for the presence of active cells. As a conse-
quence, it is possible to conjecture that there is a value 
for porosity which is optimal, for what concerns the 
largest available number of actor cells which can act 
(Martin 1984; Beaupre et al. 1990a).

The model which we present in this paper incorporates the 
aforementioned assumptions. They surely limit the range 
of its applicability. On the other hand, the simplifications 
which are made possible by their use allow for the for-
mulation of effective numerical codes, whose predictive 
capacity will be discussed in what follows.

Assuming that the material body, described as a con-
tinuum, is the model of a certain class of living bone tis-
sues, we consider the following kinematical Lagrangian 
fields, all to be evaluated in the position X belonging to 
the three-dimensional Euclidean space ℰ (see Lekszycki 
and dell’Isola 2012 for more details):

(a)	 the Lagrangian bone tissue macroscopic mass density 
�(X, t) . Its value gives the mass density of the bone but 
referred to the whole Lagrangian volume occupied by 
it: this volume includes both the empty voids and the 
regions occupied by the bone. For this reason one can 
call it: ‘apparent’ Lagrangian bone mass density.

(b)	 the Lagrangian bone tissue porosity �(X, t) . It is the 
fraction of the Lagrangian volume which is actually 
‘empty’ (at the small scale), i.e., not being occupied by 
bone tissue;

(c)	 the biological stimulus �(X, t) . We assume that the 
results of the biological feedback of living tissue can 
be represented simply by a scalar field. Its value at 
the position X and at the instant t is an estimate of 
the activation signal produced by the sensor cells and 
then transmitted to the actor cells, that is osteoblasts, 

responsible for synthesis of bone tissue, and osteo-
clasts, responsible for resorption of bone tissue.

(d)	 the scalar field �(X, t) , which represents the volume 
density of strain (or deformation) elastic energy stored 
at the point X and at the instant t in the bone tissue. It 
is the energy which is used in (locally) deforming the 
bone tissue starting from the reference configuration—
which we assume stress-free—into the configuration at 
the instant t;

(e)	 The Lagrangian density of osteocytes dOC(X, t) . It is the 
number of sensing cells which are alive in the Lagran-
gian unit volume. These are the cells which can really 
‘estimate’ the mechanical deformation state of bone 
tissue, can produce the feedback signal and effectively 
send it ‘toward’ the actuator cells.

Lagrangian fields are not sufficient to describe completely 
the deformation state of a body. We must, therefore, relate 
the just defined scalar fields

to the reference configuration. It is, indeed, necessary to link 
them to a kinematics of bone tissue described in terms of 
placement from a given reference configuration. The concep-
tual framework in which we are operating is that which is 
called the finite elasticity of continua endowed with micro-
structure. Once specified the reference ∗ and the current 
t configurations to define the ‘stress-free’ configuration 
used to label material particles and their configuration at 
the instant t, the placement of the body ‘bone tissue’ in the 
Eulerian ℰ space of positions is given by the mapping � , 
which is assumed to be a function which is continuous, dif-
ferentiable and one-to-one:

where with x we denote the position occupied by the mate-
rial particle labeled by X belonging to the bone tissue at 
instant t. The following standard notation is used:

where (1) with the symbol F we denote the so-called gra-
dient of placement or deformation gradient, (2) with J the 
determinant of F : it describes the volume variation in the 
transformation from Lagrangian to Eulerian configurations, 
(3) with Grad(⋅) we denote the gradient operator when 
using the Lagrangian coordinates, (4) with G we denote the 
Green–Lagrange deformation (strain) tensor, and (5) with � 
the identity tensor.

Remark that linearity in small strain for bone tissue is 
sometimes regarded as a too much simplifying assump-
tion, since experimental evidence reported in the literature 
as Morgan et al. (2001), Davy et al. (1999) leaves open the 
possibility of considering nonlinearities. Indeed, we remark 

(1)�(X, t), �(X, t), �(X, t), �(X, t), dOC(X, t)

(2)x = �(X, t),

(3)F = Grad� , J = detF, 2G = F
⊤
F − �
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that a nonlinear behavior has been observed even at small 
strain, namely below 0.4%, in a range which can be con-
sidered important from a clinical and biomedical point of 
view (Morgan et al. 2001). This behavior may be probably 
due to hierarchical and complex structure of bone as well as 
to the presence of micro-cracks inside the bone tissue that 
can trigger nonlinearities (Davy et al. 1999; Giorgio and 
Scerrato 2017).

The placement function specified in Eq. (2) gives the con-
ceptual basis of the Lagrangian description of the kinematics 
of bone tissue.

Of course, the material frame-indifference of defor-
mation energy is a necessary requirement. Therefore, we 
must assume that � must be a function of �(X, t) via the 
Green–Lagrange strain tensor G only.

We recall that our description of bone tissue biomechan-
ics is formulated at a macro-level, i.e., at a larger scale. One 
should need a careful homogenization procedure for deduc-
ing such a macro-model from a micro-model including all 
the lower scale biomechanics phenomena which may be 
known. We refrain from this for two reasons: (1) clearly 
not all relevant micro-phenomena are fully understood or 
known and (2) the complexity of micro-phenomena have 
macroscopic effects which (hopefully) can be simplified in 
overall average behavior. We try to describe this last simpli-
fied behavior with a direct macroscopic approach, which, 
however, tries to take into account the most relevant aspects 
of micro-phenomenology.

At higher scale level, therefore, we have introduced the 
porosity field, as an extra kinematical descriptor. Moreover, 
we will assume to be able to conjecture the results of said 
‘homogenization’ procedure for getting an expression for 
deformation energy in terms of ‘microscopic’ phenomena 
occurring at a smaller scale (see Sect. 5). In order to be able 
to formulate such a conjecture, we will need to introduce a 
specific extra kinematical descriptor.

In poromechanics (see, e.g., Lurie et al. 2018; Khalili and 
Selvadurai 2003; Misra et al. 2015, 2013), and coherently to 
what done in the Biot model, we introduce the Lagrangian 
field �(X, t) defined as the change of the effective volume of 
the voids per unit volume in the transformation from Lagran-
gian to Eulerian configuration. In formulas

where, as already assumed before, the superscript ∗ refers to 
the reference configuration. It is well known that reference 
configuration is to be specified clearly, as it constitutes the 
domain in which all kinematical fields are to be defined. The 
present case which deals with the process of bone remod-
eling does not represent an exception to such a general rule.

Moreover, we have chosen a Lagrangian (that is referen-
tial) description because it is surely the most suitable also 
when the problem of getting computational predictions is 

(4)�(X, t) = �(X, t) − �∗(X, t)

confronted. Lagrangian description has to be preferred to 
Eulerian description in general, as this last description needs 
time-varying domains of definition of all involved fields.

3 � The evolution equations for bone mass 
describing in remodeling process

For the sake of simplicity, in this section, we postulate an 
evolution equation for bone mass density without deriving it 
from a variational principle. This important conceptual step 
will be formulated in future works. Here, we simply remark 
that the evolution equation which we formulate below should 
be deduced from a Hamilton–Rayleigh principle by using a 
suitable dissipation functional.

Our approach follows the now standard approach which 
determines the evolution of the Lagrangian bone mass den-
sity by means of a first-order ordinary differential equation 
(see Beaupre et al. 1990b; Mullender et al. 1994; Lekszycki 
and dell’Isola 2012). In this way, we believe to be able to 
capture the most important features of the bone adaptation 
process even if we are aware that it is much more complex. 
The postulated evolution rule for the Lagrangian apparent 
mass density is:

In the previous Equation  (5) on the RHS a function  
appears. It is assumed to be able to account for some phe-
nomena which are of purely biological nature, some mechan-
ical interactions and some interactions involving mechanical 
and biological couplings.

Indeed, the rate of change of the mass density is postu-
lated to be driven by the biological stimulus, � . The stimulus 
is influenced by the osteocytes which respond to the current 
mechanical configuration which they sense. The osteocytes 
produce a source of biological stimulus which diffuses in 
the bone tissue. On the other hand, the cells activated by the 
stimulus need to deposit on the internal surface of the bone 
pores to start their action. It is indeed the specific avail-
able surface of bone (Martin 1984) which is the place where 
the resorption or the synthesis of bone tissue can occur. We 
assume that this specific available surface is determined as 
a function of the current ‘effective’ porosity. With effective 
porosity, we mean the fraction of porosity which is indeed 
involved in the deposit of active cells and is therefore really 
involved in the remodeling, growth and resorption, process.

It is clear that the effective architecture, at the lower scale, 
of the bone tissue, is very relevant in the determination of 
specific surface available to cell deposit. In the literature, it 
is observed that there are, in bone tissue, different kinds of 
porosity (Cowin 1999) and this classification is an impor-
tant feature in the evolutionary phenomenon in study. It has 

(5)
��∗

�t
= (�,�)
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been, indeed, observed that, namely osteoblasts and osteo-
clasts, can be effectively activated only on some specific 
surfaces produced by the inner porosity on the bone tissue: 
we refer, in particular, to the inter-trabecular surface (on 
saucer-shaped Howship’s lacunae (Clarke 2008)) when deal-
ing with the cancellous bone, to the Haversian canals or to 
the endosteal or periosteal surface (inside the so-called ‘cut-
ting cones’) for cortical bone (Harrison and Cooper 2015).

The most fundamental property to be accounted for is 
therefore exactly the bone porosity, as it is exactly the 
presence of porosity which permits to the bone tissue to be 
biologically active. Indeed, not only the presence of poros-
ity allows for the possibility to deposit active cells, but 
also it allows for the diffusion of the said cells (or of their 
biological precursors) through the bone tissue so that they 
can be activated where they are needed. Finally, porosity 
allows to the nutrition supply to be made available where 
it is needed allowing for the building of the transport-
ing vascular network. For this reason, in the macroscopic 
model which we propose here, a main role is attributed to 
the scalar field describing bone tissue porosity. The previ-
ous considerations motivate the following choice for the 
structure of the function :

In the previous Equation (6), the function a(�) is designed 
to calculate, when the current value of porosity allows such 
production, i.e., the production (or resorption) rate of the 
bone mass density. For clear phenomenological reasons, it 
is assumed to be a piece-wise linear function of the local, in 
space and time, value for the biological stimulus.

On the other hand, the function H triggers said produc-
tion rate, by supplying a suitable weight term. Its role con-
sists in allowing for the calculation of the specific available 
deposit surface. In other words, the function H supplies, at 
the macro-level, the needed geometric information from 
the microstructures architecture of the bone tissue which 
is being remodeled. We assume that a specific regularity 
in such architecture can be recognized so that the shape, 
and therefore the area, of internal deposit surfaces, can be 
uniquely determined, for physiological reasons and for each 
kind of bone tissue, as a function of the current porosity.

To be more precise, we will assume that the function 
a(�) is given by the formulas:

We believe that it is important, also in the simplified context 
of the model which we present here, to introduce the concept 

(6)(�,�) = a(�)H(�),

(7)

a(�) =

⎧⎪⎨⎪⎩

sb

�
�(X, t) − Ps

ref

�
for �(X, t) > Ps

ref

0 for Pr

ref
⩽ �(X, t) ⩽ Ps

ref

rb

�
�(X, t) − Pr

ref

�
for �(X, t) < Pr

ref

of ‘lazy zone’ (see, e.g., Beaupre et al. 1990a; Ruimerman 
et al. 2005; Giorgio et al. 2016) as a factor which influences 
the biological stimulus. Indeed, it has been observed that 
there is an interval in the values of biological stimulus in 
which the activation of osteoclasts and osteoblasts does not 
occur. The feedback system active in bone remodeling is, in 
a sense, stabilized by this lazy zone. There are situations in 
which the bone tissue behaves as if it were well adapted to 
the external loads, and therefore, it has not the tendency to 
change its structure.

The lazy zone is an interval characterized by two thresh-
olds Pr

ref
 and Ps

ref
 . The first threshold is the relative to the 

resorption process and the second to bone tissue synthesis. 
This interval characterizes the so-called homeostatic physi-
ological equilibrium configuration for the bone tissue.

The constitutive parameters sb and rb can be possibly dif-
ferent one from the other and represent, respectively, the 
synthesis rate and the resorption rate for given bone tissue. It 
is not useless to remark that the equation governing the bone 
mass production or resorption has a structure similar to the 
equation which is governing the velocity of a phase interface 
in the theory of phase transition (see, e.g., Abeyaratne and 
Knowles 2006; Berezovski et al. 2008; Engelbrecht and Ber-
ezovski 2015; Eremeyev and Pietraszkiewicz 2009, 2011). 
This circumstance should not surprise too much, however, 
if one thinks at the deposit mechanism of active cells which 
has been discussed before. Bone mass is growing exactly 
because of an interface between calcified bone tissue and the 
other components of bone tissue, those which fill its porosity 
space. To make our analysis more specific, we estimate heu-
ristically, the function H by calculating the available surface 
for a cellular square lattice, which is assumed to be able to 
represent faithfully enough the bone trabecular pattern. The 
obtained results, using different values of porosity (see for 
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Fig. 2   The specific ‘effective’ surface function H(�)
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more details Giorgio et al. 2016), are depicted in Fig. 2. In 
conclusion, the function H must be postulated to give the 
specific ‘effective’ surface which plays a role in the remod-
eling process. For trabecular bone tissue, we expect that the 
curve depicted in Fig. 2 reflects the effective geometrical 
situation of bone microstructure. Remark that in the said 
figure there is a zone between the vanishing porosity value 
and the porosity value from which the plotted function has 
nonvanishing values. This interval of porosities refers to a 
bone tissue which we can call ‘cortical bone.’ The value of 
porosity for compact bone, � = 0.166 , is based on experi-
mental data (Martin 1984). For purely computational rea-
sons, we will consider, for the cortical type of bone tissue, 
a small and nonvanishing positive value for the function H. 
This is needed for not inhibiting completely the remodeling 
process when the trabecular bone becomes cortical.

3.1 � A generalization of a previous model in which 
stimulus did not diffuse

It is clear that the most important concept in our modeling 
procedure regards the biological stimulus and the modali-
ties in which it is produced starting from the mechanical 
configuration of the bone tissue.

We start by recalling that it is widely accepted in the 
literature that the osteocytes embedded in a given portion 
of bone tissue produce, as a response to mechanical defor-
mation, a signal. This signal, when it is received, activates 
osteoblasts and osteoclasts. Of course, the signal can be 
received only in a neighborhood of the osteocytes’ loca-
tion. The questions arise: How is the signal triggered by 
mechanical deformation? How far is traveling the signal? 
In which time interval does the signal reach a certain target 
cell? Several possible simplifying assumptions have been 
proposed to give an answer to these questions. Each of these 
set of assumptions produced a mathematical algorithm to 
be used for calculating the scalar field modeling the bio-
logical stimulus. Some algorithms base their calculations 
on the estimate of the value of deformation energy; others 
start from the comparison of the current values for stress or 
strain with suitable effective values. In other more sophis-
ticated models, it is introduced a measure of bone tissue 
damage and the signal production is related to this damage 
level (see for more insight on this subject Prendergast and 
Taylor 1994; Hambli 2014; Hambli et al. 2015 and also Pla-
cidi et al. 2018b, a; Placidi and Barchiesi 2018; Contrafatto 
and Cuomo 2006; Cuomo et al. 2014).

Simply for heuristic reasons, and being ready to gen-
eralize suitably the model, we follow the choice made 
in Lekszycki and dell’Isola (2012). In that paper, the stim-
ulus has been represented, in an integral way, as a func-
tional of the strain energy density � . To be more precise, 

the signal received by each actuator cell is assumed to be 
the integral of all signals produced by the surrounding 
osteocytes. Of course, ‘far’ osteocytes are assumed to have 
a lower influence than closer osteocytes.

The functional used to calculate the perceived signal is 
therefore characterized by two weight functions: (1) the 
density of osteocytes, dOC (Lekszycki and dell’Isola 2012) 
and (2) and a function, K(X,Y, t, �) , which accounts for the 
influence of far (in space and time) osteocytes on a given 
material particle of bone tissue.

The implicit assumptions accepted here are: (1) the 
number of present osteocytes is assumed to be propor-
tional to their overall activity; (2) the function K(X,Y, t, �) 
is sufficient to characterize the influence in space and time 
of each of the active group of osteocytes.

The functional postulated for calculating the biological 
stimulus which is the response to the mechanical deforma-
tion state is:

In this equation V∗ is the volume occupied by the bone tis-
sue in the chosen reference configuration, t is the current 
time instant, � is a dummy integral variable denoting time, 
Y is the variable characterizing the location of considered 
signaling cell and X is the location where the signal may be 
able to active osteoblasts or osteoclasts.

Mathematically speaking, � is the result of a nonlocal 
interaction, of the kind already studied by Piola (dell’Isola 
et al. 2015). This modeling procedure is somehow stand-
ard (see, Carvalho et al. (2009)), and it is used in viscoe-
lasticity and in the so-called nonlocal elasticity. Of course, 
some further relations are needed to make our modeling 
algorithm well posed. There are some relationships among 
macro-fields which need to be postulated as a consequence 
of some features of considered systems which can be per-
ceived only al lower scale. Refraining, once more, from 
any effort to introduce any homogenization procedure, we 
postulate some constitutive relations as follows.

The constitutive relation allowing for the calculation of 
the density of sensor cells is assumed to be:

In the last Equation (9), � is a further constitutive param-
eter. As just formulated constitutive equation assumes that 
the osteocytes are uniformly distributed in the bone tissue, 
so that their number is proportional to the volume fraction 
occupied by living bone tissue, the interpretation of the 
coefficient � is immediate. We conjecture that each kind of 
bone tissue will be characterized by its own value of this 
parameter.

(8)�(X, t) =

t

∫
0

∫
V∗

K(X,Y, t, �)�(Y, �)dOC(Y, �) dY d�,

(9)dOC = 𝜂 (1 − 𝜑∗), 0 < 𝜂 ≤ 1,
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If one assumes that there is an instantaneous transmission 
of the biological signal, its algorithmic expression can be 
simplified. This assumption implies that the transmission 
time scale can be neglected when compared with the char-
acteristic time of the whole bone tissue growth-resorption 
phenomenon. In the case of instantaneous transmission, the 
stimulus functional assumes the form:

In the last equation, the weight function k(X,Y) has not any 
explicit dependence on time. It has to be a decreasing func-
tion of the distance between X and Y . In the literature, one 
finds (Mullender et al. 1994; Lekszycki and dell’Isola 2012; 
Andreaus et al. 2014a) at least two of such functions

The introduced D plays the role of a novel characteris-
tic length scale, which controls the phenomena of signal 
perception.

It is now suggestive to notice that all the previously dis-
cussed influence functions have a lot of similarities with the 
Green function for the heat equation, both in their structure 
and in their properties.

4 � A particular model of stimulus diffusion

The natural way for describing the process of exchange of 
signal from osteocytes to the actuator cells is to consider that 
the signal is diffusing in the bone tissue and that osteocytes 
excite the diffusion by means of the production of some 
source of signal. Mathematically speaking, this is equiva-
lent to state that the integral functional (8) or (10) must be 
replaced by the operator which solves a diffusive evolution 
equation.

This assumption has several advantages: (1) its biome-
chanics and physiological interpretation is immediate and 
can be related to the diffusion of chemical species inside the 
bone tissue and (2) from the computational point of view, it 
allows for immediate implementation of the model.

Indeed, in many standard and commercial FEM pro-
grams, many kinds of diffusive PDEs are already imple-
mented, while, on the contrary, very often the convolution 
integral formulation is avoided. Moreover, by accepting 
to formulate a known evolutionary equation for biological 
stimulus it is easier to account for possible surface effects 
and to implement the correct boundary conditions.

Again it is clear that we must consider the more use-
ful Lagrangian description, so that the following parabolic 
evolution equation for biological stimulus � is postulated

(10)�(X, t) = ∫
V∗

k(X,Y)�(Y, t)dOC(Y, t) dY,

(11)k(X,Y) = e
−

‖X−Y‖
D or k(X,Y) = e

−
‖X−Y‖2
2D2 .

In the previous Equation (12), � is introduced as the perme-
ability to the biological stimulus of considered bone tissue. 
Remark that in general, due to the microstructure of con-
sidered tissue, it is, in general, a second-order tensor field.

Most important is the source term postulated in the pre-
vious parabolic equation for the biological stimulus. We 
assume that there is a driving force from which the stimulus 
is originated. It is the source r which is assumed to depend 
on the current mechanical deformation. We will choose in 
the sequel the following expression for said source:

In the previous Equation  (13), we have introduced the 
weighting function �(�∗) . To this function, one has to 
attribute a role which is very similar to the role plaid by the 
previously introduce coefficient dOC . More precisely to the 
function �(�∗) must be attributed, continuing our parallel 
with the ideas from the theory of control, the role of ‘meas-
ure of the efficiency of the sensor network.’

In the numerical simulations which we present in this 
paper, the particular form chosen for this efficiency function 
(see Fig. 3) is given by:

The coefficient � is a signal-saturation constitutive parameter 
(Giorgio et al. 2017b). The reason for which this assumption 
is made and the meaning of the further parameter are clear 
when one inspects Fig. 3. When a certain amount of sensor 
cells is present, that is when a certain mass density of bone 
tissue is reached, then the sensor network reaches its maxi-
mum efficiency. On the other hand, with fewer cells (cor-
responding to less dense bone tissue) the produced signal 

(12)
��

�t
= Div(�∇�) + r + s,

(13)r = �(�∗)�(�),

(14)�(�∗) = arctan(��∗)Hv(�
∗),
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fades. Useless to say: there is no signal in the absence of 
sensing cells.

Remark also that in the previous Equation (12) a sink 
term appears: it is a field which models the action of meta-
bolic tissue activity directed to resorb the stimulus. A rea-
sonable assumption for such sink term may be

The constant R controls the rate of stimulus resorption, 
while the Heaviside function Hv(⋅) starting from zero value 
has been introduced. Its presence is necessary for reasons 
of mathematical consistency if one wants that the signal s 
remains always negative.

In order to describe the physical meaning of the param-
eters introduced in Eqs. (13) and (15), it is possible to resort 
to an interpretation of the biological phenomena at the cell 
scale, and then go back to the macroscopic level through a 
homogenization process of averaging. In particular, regard-
ing the source term of the signal r in Eqs. (13)–(14), the sig-
nal formation was hypothesized to be modulated by a weight 
function applied to the mechanical stimulus to account for 
the influence of sensor cell density on signal efficiency. Spe-
cifically, it can be assumed that in a situation of scarcity 
of sensor cells, the signal quality is poor, while as soon as 
a certain critical density has more or less rapidly reached 
(rapidity is modulated by the parameter � ), the signal qual-
ity stabilizes at a constant value. Regarding the sink term, 
s, in Eq. (15) it can be assumed that at the cellular level the 
osteocytes, mechanically stimulated, secrete chemical, enzy-
matic, hormonal and nutritive signals, the so-called ‘signal-
ing factors,’ that are released and transmitted through the 
lacuno-canalicular system and reach the actuator cells. It 
can be assumed that these signaling factors remain active 
for a certain time interval even after the mechanical stimulus 
has ceased and are physiologically reabsorbed [minus sign 
in Eq. (15)] in a finite amount of time. With reference to 
Eq. (15) the parameter R, assumed to be constant for sim-
plicity, was introduced to represent at a macroscale the phe-
nomena described above assuming a simple proportionality 
between the sink and the stimulus. From the quantitative 
point of view, it can be thought to identify the values of the 
parameters introduced in Eqs. (13)–(15) ( � and R), evaluat-
ing, e.g., with reference to Fig. 5, the rapidity of formation 
of the bone tissue and the value attained at equilibrium. The 
proposed model has been designed with a focus on the pos-
sibility of tailoring experiments in which it is possible to 
measure observable quantities (the apparent mass density of 
the bone tissue) and then to identify the above parameters 
from the quantitative point of view.

One can observe (observation by Cattaneo 1958) that the 
diffusion equation discussed up to now sees a signal which 
propagates with infinite speed. To obviate to this difficulty, 
and therefore to introduce a finite signal speed propagation, 

(15)s = −R�Hv(�),

one can further modify Eq. (12). For instance, one could 
postulate for the evolution of signal the following PDE

in which the characteristic wave time t∗ is introduced.
The proposed diffusion model can be surely improved 

and better adapted to try to catch the features observed in 
bone tissues. Besides, the intrinsic discrete nature of the sen-
sor network system of the osteocytes present in remodeling 
bone may require treatment similar to the one presented in 
Colangeli et al. (2016), Colangeli et al. (2017) in the context 
of generalizing the diffusive part of presented model Allen-
Cahn type equations may be of use: for the mathematical 
properties of this equations see De Masi et al. (1995).

5 � A model for growing bone tissues using 
concepts from poromechanics

As already announced when introducing the Lagrangian 
field of variation of porosity, in the previous section, we 
will adapt the standard conceptual framework used in poro-
mechanics to the present situation. As in every Lagrangian 
postulation of mechanics has to be done, we start by postu-
lating an expression of Lagrangian elastic energy density. 
Our ansatz is the following: Lagrangian elastic energy � is 
assumed to be a function of (1) the Green–Lagrange strain 
tensor � , (2) the change of porosity � , and (3) the considered 
material particle X (this assumption is needed for accounting 
for possible inhomogeneities. In formula

The reader will remark that as it is usually the case in con-
tinuum mechanics, the postulated deformation energy is not 
an explicit function of time. On the other hand, differently 
from what happens usually in standard continuum mechan-
ics, the Lagrangian mass density does evolve with time. 
However, differently to what happens in the mass varying 
problems similar to those concerning rocket dynamics, 
we can assume that the mass density variations are slow 
enough and therefore their variations on inertial phenomena 
and on kinetic energy are negligible. Moreover, we do not 
include any ‘kinetic energy’ effects related to the process 
of mass variations, postponing to future investigations such 
considerations.

We will postulate and use a particular expression for the 
constitutive Equation (17) being guided by the results avail-
able in the literature on porous materials. Indeed, the bone, 
from the mechanical point of view, must be regarded as a 
porous medium.

(16)t∗
�2�

�t2
+

��

�t
= Div(�∇�) + r + s,

(17)� = �(�, � ,X).
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We remark that our aim here is to propose a model that, 
at macroscale, is able to describe in an average sense the 
mechanotransduction activity which drives the remodeling 
process. Therefore, for the sake of simplicity, an isotropic 
expression for deformation energy is assumed to be valid 
to avoid unneeded complexity in the mechanical formu-
lation (Cowin 1999). Indeed, some comparative studies 
between isotropic and anisotropic modeling of bone show 
that the differences in the results are sufficiently small and, 
as a first approximation, an isotropic model can be adopted 
(Peng et al. 2006). We are aware that for a complete and 
exhaustive mechanical formulation an anisotropic model 
should be adopted but this choice introduces only more 
details not much relevant at this stage of model develop-
ment. The strain energy density which we conjecture has 
the following expression:

where we introduce a dependence of the Lamé moduli on 
Lagrangian porosity Lekszycki and dell’Isola (2012):

In the previous formulas �0, �0 are assumed to be, in general, 
functions of X in order to be able to account for nonhomo-
geneous material. We recall from the definition of porosity 
that, in the presence of only bone tissue, the volume fraction 
occupied by living bone tissue is

The interpretation of the quantity �Max is easy: it represents 
the maximum value possible for bone density.

We have assumed (but this assumption can be easily 
relaxed) that the Lamé moduli produce a constant Poisson 
ratio, � . As a first approximation, in what follows we set 
it to 0.3. On the other hand, the Young modulus is given 
by the expression

Of course, the assumption of isotropic bone is not com-
pletely realistic, also at the macroscale which we have used 
for our modeling procedure. However, the reader will agree 
that it is easy to generalize the previous constitutive assump-
tion to incorporate anisotropies. This generalization will be 
the subject of future investigations.

In the paper Giorgio et al. (2016), it was proven that the 
value � = 2 is a reasonable choice. Clearly, we will asso-
ciate to Y0 the value of the Young modulus as estimated 
for the compact bone. One has to remark that the power 

(18)
�(�, � ,X) = � tr

(
�

2
)
+

�

2
(tr�)2

+
1

2
Kc �

2 +
1

2
Knl(∇�)

2 − Kcp � tr�,

(19)� = �0(1 − �∗)
�
; � = �0(1 − �∗)

�
,

(20)
�∗

�Max

= (1 − �∗)

(21)Y = Y0(1 − �∗)
�
.

low (21) has some bases in the literature: indeed, it has 
been systematically used for the formulation of the mod-
els for cellular solids, for instance, see Gibson and Ashby 
(1997), Ashby et al. (2000).

Again basing our considerations on the results from 
poromechanics, it is possible to estimate the compress-
ibility stiffness Kc as follows:

by considering the so-called drained bulk modulus of the 
porous bone matrix,

and the bulk modulus Kf of the fluid which may fill the pores, 
namely bone marrow or interstitial fluid. The parameter 
�B ∈ [�∗, 1] is what has been called Biot-Willis coefficient.

The parameter Knl in Eq. (18) is a modulus related to 
the nonlocal interactions between neighboring pores and 
is assumed to be constant for the sake of simplicity. It is 
worth noting that the term in Eq. (18) which takes into 
account the gradient of the change of porosity allows us 
to also apply boundary conditions on the porosity which 
otherwise are not sustainable. Some studies have been 
proposed to better characterize the complex behavior of 
systems as bone tissue, see, e.g., Li et al. (2019), Camar-
Eddine and Seppecher (2001), Lekszycki et al. (2017), 
Misra and Poorsolhjouy (2015), Abali et al. (2012), Chatz-
igeorgiou et al. (2014).

We assume that the coupling parameter Kcp related to the 
interaction between the Green–Lagrange strain measure and 
the Lagrangian porosity is given by the following expression

In it, the function ĝ(𝜑∗) is postulated to have the form

where Ak3
∈ (0, 1] and sk3 are suitable extra material 

coefficients.
In order to get the parts of the governing equations which 

refers to specifically mechanical principles for the consid-
ered continuum model, as we have argued before, we accept 
that there are no inertial effects of relevance, when the loads 
are applied to the bone tissue with a characteristic time scale 
which is the same as the typical characteristic time of the 
remodeling process. We are therefore aware of the fact that 
in the present model we cannot describe the growth phe-
nomena, induced by loads having some specific (relatively 

(22)Kc =

(
�∗

Kf

+
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Kdr

)−1

(23)Kdr =
Y
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,
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√
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high) frequencies, which have been observed in some clini-
cal situations.

In order to be consistent with this assumption, we must 
consider applied to the bone tissue only loads which are 
varying very slowly, so that one can be assured that a quasi-
static deformation process takes place.

By applying in the considered situation the principle of 
virtual work, we get that the following variational equality

holds for any regular subbody  included in the considered 
body.

Having specified the function which assigns the density 
of deformation energy, the virtual work of internal interac-
tions is given by the expression

Instead, the external virtual work, that is the work expended 
on virtual displacements by the external loads, is given by

In the last expression (1) the symbol �i , represents the sur-
face traction on the boundary �� : it expends work on the 
virtual displacement having components ui , (2) the symbol 
Ξ , represents the microstructural action which is associated 
with the local dilatation of matrix pores: it expends work on 
the virtual change of porosity �.

6 � Forecasting capabilities of considered 
models: targeted numerical simulations

The aim of this section is to prove that the theoretical efforts 
presented in the previous sections give some promising mod-
eling possibilities. Indeed, we have performed some numeri-
cal simulations which deal with some representative aca-
demic cases, which can be regarded as benchmarks for future 
investigations. We believe to have concluded that the actual 
forecasting capacities of the introduced model are very inter-
esting. In particular, we deal with remodeling situations in 
which the mechanical stimulus guides the process in a way 
that the results obtained via the proposed diffusive model of 
the stimulus, Eq. (12), can be compared with the previously 
developed nonlocal instantaneous model, Eq. (10), from 
both qualitatively and quantitatively point of view.

We start by the consideration of the remodeling process 
occurring to a rectangular specimen of bone tissue when it 
is subjected to some extension tests. We treat the evolution 
process occurring in the presence of several different values 
of the externally applied loads and explore the situations in 
which the deformation is both uniform or nonuniform. These 

(26)��int + ��ext = 0

(27)��int = −�
��d ,

(28)��ext = �
��

�i�uid + �
�

Ξ ��d ,

tests are inspired by the aim of simulating the physiological 
behavior of a portion of bone tissue subjected to a load con-
tinuously varying in time. Secondly, we consider a sample 
with a wide area characterized by the absence of osteocytes, 
from which area no stimulus is originated. The assumed situ-
ation could be referred to as partially necrotic tissue, and 
the consequent remodeling activity could be thought of as a 
healing process. Of course, the healing stage is a very com-
plex process involving angiogenesis into the diseased zone 
of bone which is driven by a set of mechanobiological and 
biochemical factors. A reliable model of angiogenesis effect 
on healing bone tissues has been already proposed, e.g., by 
Lu and Lekszycki (2017); thus, we analyzed only the follow-
ing stages after that this first preliminary step is completed.

As already announced before, it was possible to perform 
the numerical simulations by using, with few technical expe-
dients, a commercial software: that is COMSOL Multiphys-
ics‸ . As it is well known this software is based on the finite 
element method. There are no specific computing difficulties 
in treating the more general three-dimensional evolution and 
remodeling problem. For making a first interpretation of the 
novelties of the presented model, we study here a simpler 
two-dimensional problem. The geometry is very simple, 
also, and we refrained from introducing any complex geo-
metrical or mechanical feature. We want to be sure that the 
first results which we obtain have a straightforward interpre-
tation and can be understood in a univocal way.

6.1 � Physiological remodeling

The simulations deal with a rectangular specimen having 
aspect ratio 2:1. We consider the constitutive parameters 
to be those of a cancellous bone. Since the remodeling pro-
cess is more active in cancellous bone than in cortical bone 
due to wide availability of space (inter-trabecular poros-
ity) and supply of nutrients coming from bone marrows 
and blood vessels, we do choose to consider as the initial 
state of our simulations the spongy tissue which provides a 
more complete and exhaustive case to be analyzed. Due to 
the complexity of cancellous bone structure, the proposed 
macro-model is quite effective (being a coarse-grained 
model) to predict the evolution of the bone mass density 
which may resolve also in a cortical bone in the presence of 
a sufficiently high level of deformations. The specimen has a 

Table 1   Material parameters used in the numerical simulations
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length L = 1 cm, and its initial porosity is uniform and equal 
to 0.5. In Table 1, we give the constitutive parameters which 
are used in the presented simulations.

6.1.1 � The remodeling resulting from a uniform loading

The first performed simulations considered those boundary 
conditions which are needed to produce a uniform distri-
bution of deformation energy along the whole considered 
specimen. These conditions are: (1) on the left short edge 
(see Fig. 4) the longitudinal displacement is imposed to be 
zero, (2) the displacement of one point of the same side is 
imposed to vanish (so that rigid motions are not allowed), 
and (3) a spatially uniform load, which is also constant in 
time, is applied to the right short edge so that an extension 
of the specimen is determined (see Fig. 4).

We remark again here that in the present context, the fact 
that the load is constant in time means simply that, in the 
considered class of phenomena, the loads are varied ‘slowly,’ 
when compared to the remodeling characteristic time. Five 

different levels of externally applied loads were considered: 
the level of these loads have been calibrated in order to 
estimate when the condition of homeostatic equilibrium is 
already present with the initial considered bone configura-
tion (see Fig. 5 and refer to the label ‘1’).

Other values of externally applied loads increased by a 
factor of 1.3 and 1.5 (reported on the labels in Fig. 5) induce 
growth phenomena which increase the value of bone mass 
density in homeostatic equilibrium. Finally, to induce 
resorption at homeostatic equilibrium it was considered a 
decrease in the applied force, by multiplying the initially 
homeostatic force times a factor of 0.4 and 0.3 (values 
again used as labels in Fig. 5). We report that the exter-
nally applied load to assure that the initial configuration was 
already in a homeostatic state was FH = 3.1 × 10−3 Y0 L.

Figure 5 is introduced to show how the bone apparent 
mass density evolves in the bone material particle located 
at the geometrical center of the specimen. To get the non-
dimensional evolving value of the bone mass density, we 
have used the maximum value of bone mass density ( �Max ) 
as reference quantity, while to get nondimensional time scale 
we have considered as characteristic time the period of 200 
days.

Obviously, the deformation energy density is uniform, in 
the considered instance. Therefore, also the biological stimu-
lus as estimated with Equation (12) results to be uniform. In 
this elemental case, all the material points of the specimen 
experience the same time evolution.

By inspection of the results obtained, as presented in 
the previously mentioned plots, we can conclude that: 1) 
with increasing applied loads, the bone tissue mass growth 
increases; 2) there is at least a specific value for the exter-
nally applied load which leads to homeostatic equilibrium; 
3) for values of the applied loads smaller than the homeo-
static load, the resorption increases with smaller loads; 4) 
the time of approach toward the homeostatic equilibrium 
seems to be approximately the same for all growth and all 
resorption processes. However, the resorption process is 
surely slower than the growth process.

Subsequently, the same extension test for a growing bone 
tissue is simulated with the model in which the stimulus is 
given with the nonlocal instantaneous biomechanical inter-
action described in formula (10). In this last formula, the 
function k is postulated to have the structure specified in 
formula  (11)2 and the characteristic signal influence range 
is assumed to have the value D = 0.1L . In Fig. 6, one finds 
the obtained results for the spatial average of the appar-
ent bone mass density in the case in which the considered 
extension test is performed with the same settings as in the 
previously presented numerical simulations which concern 
the stimulus diffusive model. Indeed, the distribution of the 
biological stimulus with the instantaneous model is not uni-
form for the presence of significant boundary effects despite 

Fig. 4   Uniform extension test: a physiological case
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the sample with the diffusive model of the stimulus
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the uniformity of the deformation energy density. This lack 
of uniformity for the stimulus entails an evolution of the 
bone mass density which is not uniform over the sample. 
Figures 7 and 8 show indeed the distribution of the bone 

mass density at the end of the simulation and the time his-
tory of the maximum and minimum values of it, respectively. 
In Fig. 7 the distribution related to the homeostatic value of 
the load FH has been dropped out because the bone tissue 
remains in the homeostatic state without any evolution.

The reasoned comparison of Figs. 5 and 6 leads to con-
clude that the predicted evolutions, with the two models, are 
rather different and different is also the final product of the 
evolutionary growth/resorption processes.

Indeed, in the case of the instantaneous signal model, the 
final structure of remodeled bone represents a nonuniform 
homeostatic equilibrium condition. On the other hand in the 
diffusive model for stimulus propagation, we observe that 
different levels of porosity are finally reached when different 
are the values of the applied loads. This feature of diffusive 
stimulus model is rather promising, as it seems to be able to 
describe the observed experimental evidence.

In the instantaneous nonlocal stimulus model the final 
consequence of the difference in the values of the applied 
loads is a difference in the characteristic time needed for 
reaching homeostatic equilibrium: if the loads are more 
intense, this time becomes shorter, and the remodeling 
process is faster at least for the loads larger than the 
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Fig. 7   Normalized mass density for the nonlocal instantaneous model of stimulus under uniform tension load at the end of simulation: a 1.5F
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homeostatic value. We also note that the boundary condi-
tion iv) for the diffusive model (see before) allows for the 
uniformity of growth and deformation processes, while 
in the nonlocal instantaneous stimulus model, because of 
some obvious border effects (related to the nature of the 
integral operator used for calculating the stimulus), the 
calculated stimulus, and as a consequence the evolving 
bone mass density, elastic stiffnesses, and deformation 
fields, are not uniform. This circumstance does not seem 
to be related to any physiological situation and requires 
an ad hoc correction of the integral functional to be used 
close to the specimen boundaries. (For more details, the 
reader is referred to Giorgio et al. (2016).)

It has to be remarked, also, that the properties of remod-
eled bone tissues as predicted with the use of the diffusive 
stimulus model seem to be more consistent with the experi-
mentally observed porosity distributions in physiological 
and pathological bone tissues, at least from a qualitative 
point of view.

In this context it is worth to recall one of the so-called 
rules for bone adaptation: Turner (1998): “Bone cells accom-
modate to a customary mechanical loading environment, 
making them less responsive to routine loading signals”. 
The diffusive stimulus model, by including the metaboli-
cal resorption of stimulus and its removal by diffusion from 
the region in which it was originated, seems able to predict 
the aforementioned rule: indeed, as already observed before 
(see Fig. 5), in the diffusive model the remodeling process, 
in presence of a continuously applied load, tends to be less 
and less responsive when the application interval of time 
becomes greater and greater. Indeed, when the stimulus is 
outside the lazy zone, the diffusive model manages to pre-
dict the existence of different bone densities under differ-
ent load values, always reaching a homeostatic equilibrium 
state. When the lazy zone reduces to a point, the diffusive 

stimulus model still allows for the prediction of the bone tis-
sue tendency to homeostatic equilibrium, a tendency which 
is widely proven experimentally.

Instead, the instantaneous nonlocal stimulus model 
leads to a different prediction: when one simulates with it 
the remodeling tissue process in the presence of a constant 
load, which produces a stimulus outside the lazy zone, it 
seems that the final produced tissue exhibits a trend, at the 
local level, toward the attainment of only two values for 
the field of porosity (as indeed confirmed by the findings 
of Mullender and Huiskes (1995)): (1) that characteristic 
of cortical bone, (2) that for which the bone is completely 
resorbed (void volume fraction equal to 1). In the instantane-
ous nonlocal stimulus model, one can attain a homeostatic 
equilibrium state only with loads producing signals inside 
the lazy zone. Moreover, when the lazy zone reduces to a 
point, then the only two homeostatic equilibria predicted by 
the instantaneous nonlocal stimulus model are the cortical 
bone and the absence of bone. It seems to us that to induce 
homeostatic equilibrium by triggering the thresholds and 
the width of the lazy zone for the signal is rather artificial. 
We, therefore, believe that the instantaneous stimulus model 
shows some relevant limitations in its predictive capacities.

6.1.2 � The remodeling induced by a nonuniform tension 
test

In physiological situations, bone tissues are often subject to 
loads which produce nonuniform space distributions of the 
deformation energy density. To test the performance of the 
diffusive stimulus model, we have simulated the effect on the 
bone growth process of some applied loads whose density 
varies linearly as shown in Fig. 9. The maximum amplitude 
of the force is assumed to be FH = 4.51 × 10−3 Y0 L . The 
other features of considered specimens are exactly the same 
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as in the already treated uniform extension test. We start by 
showing in Fig. 10 the values for the biological stimulus 
when the modeling process begins. As it was expected, the 
stimulus values vary inside the specimen being influenced 
by those of the deformation energy density. This influence is 
mainly governed by the field of permeability coefficient � . In 
fact, this is the parameter which controls the speed at which 
the diffusion process occurs. Of course, if the permeability is 
modeled with a tensor quantity, by generalizing the assump-
tion of isotropic diffusion, then its values will determine also 
the directions of stimulus propagation.

To be more precise: if the value of � is very large, then 
the transient regime related to the stimulus diffusion is too 
short and, as a consequence, the scalar field describing the 
biological stimulus becomes quickly uniform in space. This 
seems against the experimental evidence (see Cowin 2001). 
Therefore, the choice of the values for the permeability � 
has to be performed using a careful fitting procedure. The 
global properties of the remodeled bone and the process of 
approaching the homeostatic equilibrium, as predicted by the 
diffusive stimulus model, depend in a very sensitive way on 
permeability! The performed fitting process which produced 

the simulations described in this section led to the identifi-
cation, for the physical and biological characteristic values 
for the specimens used in this paper, of the following value 
� = 1.0 × 10−4L2∕tref . This value has been checked to be 
that which allows for the description of a phenomenon often 
observed in real clinical cases: the nonuniform initial bone 
mass distribution and initial deformation energy distribution 
affect greatly the final homeostatic equilibrium attained and 
the whole time-dependent process of bone remodeling.

The just described effect is proven by our numerical simu-
lations and in particular by Figs. 11 and 12. In them (1) two 
probe points in the specimen are chosen and the time history 
of their mass density is shown; (2) the mass density distribu-
tion in the specimen is shown in two important time instants: 
that is in an intermediate stage of remodeling (occurring 
after 2 days) and the final one (after 200 days).

Also in this case study, we perform numerical simulations 
with the nonlocal instantaneous model of stimulus. In this 
case, the maximum amplitude of the linearly varying force 
(see Fig. 9) is increased to FH = 1.64 × 10−2 Y0 L to obtain 
an evolution showing a bone growth similar to the previously 
examined model. The previous value of the force results in a 
homeostatic value. Figure 13 exhibits the distribution of the 
biological stimulus with the nonlocal instantaneous model. It 
is quite different from the diffusive model for the presence of 
boundary effects directly related to the integral formulation 
of the stimulus. Hence, in this regard, similar considerations 
can be made like in the previous tests. Figures 14 and 15 
show, respectively, the evolution of the apparent bone mass 
density in the two probe points Pb1 and Pb2 and the normal-
ized mass density in an intermediate and the final stage of 
the evolution. Also, in this case, the time history is very dif-
ferent for the two considered models. The only qualitative 

Fig. 9   Nonuniform extension test: a physiological case

Fig. 10   Biological stimulus at the beginning of the nonuniform ten-
sion test with the diffusive model of the stimulus
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similarity with the diffusive model here is the presence of 
cortical bone tissue near the verges due to the distribution 
of the external load.

6.2 � Obtained predictions in a healing process

We consider here a specimen characterized exactly by the 
same biomechanics parameters as done in the previous 
examples; thus, we assume that it is constituted, in the ini-
tial state, by cancellous bone. We assume that the externally 
applied loads are inducing, in the initial configuration of the 
bone, a uniform deformation and that the initial porosity 
field is constant in space and its value equals 0.5. Moreover, 
we assume that some injury, or a disease or some medical 
treatment has killed all the osteocytes in the right portion 
of the specimen (see Fig. 16). This is what one could call a 
model for a necrotized area of the cancellous bone. In our 
modeling process this biomechanical case is represented by 
assuming that the initial value of the stimulus � , is van-
ishing in the necrotized area and that, in the initial bone 
tissue configuration, the source of the biological signal in 
the right portion of the specimen has initially become zero. 
During the process of remodeling, the biological activity 
activates the remodeling evolution also in the necrotic area. 
This means that the function �(�∗) which models the bio-
logical action of the osteocytes, is initially equal to zero and 
becomes nonvanishing only when new bone tissue is synthe-
sized: indeed, only with the production of newly built bone 
tissue new active osteocytes are formed and are active. In the 
numerical simulations presented in this section, the inten-
sity of the externally applied load is assumed to be equal to 
5.5 × 10−3 Y0L.

The results of the simulations we have conceived for 
predicting the effects of the healing process subsequent to 
necrosis by using the diffusive stimulus model are described 
in Fig. 17. In it, one finds plotted the predicted distribution 

Fig. 12   Normalized mass density in nonuniform tension test with the diffusive model of the stimulus. a intermediate stage; b final stage

Fig. 13   Biological stimulus at the beginning of the nonuniform ten-
sion test with the nonlocal instantaneous model of stimulus
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of the apparent mass density in the bone being remodeled 
in four different time instants. We believe that they are rep-
resentative of the main stages of the remodeling process 
which is being modeled here. In the initial configuration, the 
bone is assumed to have a uniform distribution of porosity: 
as already said, this constant value is assumed to be equal 
to 0.5. In the first stage of the evolution, the bone subject to 
remodeling is characterized by a biological activity starting 
in the healthy area in which bone tissue growth occurs. In 
the two subsequent stages of evolution, one can observe the 
synthesis of newly formed bone in the bone region where at 
the initial stage the necrotic area was present. The synthesis 
of bone tissue in the previously necrotic area is followed by 
the formation of osteocytes (which are a biological evolution 
of osteoblasts), which start to colonize it. In the last stage, 
one can observe a bone tissue specimen characterized by a 
uniform porosity field and whose physiological functionality 
is completely re-established.

Being completely aware of the fact that the consid-
ered evolution is simply exemplary of the potential per-
formance of the introduced model, we can, however, 

conclude that the presented results show without any doubt 
that it is able to model the observed nonlocalized effects 
of the biological stimulus on bone reconstruction. This 
point must be stressed: many simplified models presented 
in the literature are not capable to describe the onset of 
new bone tissue in a necrotized area, which, however, is 
observed experimentally. In said simplified models, which 
have indeed many merits, necrotic areas are predicted to 
remain in their state, as the stimulus is assumed to remain 
where it was produced. On the contrary, when using the 
models presented in this paper, while at the initial stage 
of the remodeling process the necrotic area cannot evolve 
toward any other biomechanical configuration, in the sub-
sequent evolutionary stages the biological signal which is 
produced by the osteocytes present in the living tissues 
does diffuse in the initially necrotic area. The presence of 
this signal in a tissue having the appropriate porosity (i.e., 
the porosity which allows for the penetration of the precur-
sor cells which can evolve into osteoblasts and osteoclasts 
and which allows for their deposit in the internal bone 
tissue surfaces) will start the biological activity needed 
to regenerate necrotic bone tissue. This regeneration will 
be operated by osteoclasts, with their action of necrotized 
bone tissue removal, and by osteoblasts, whose action 
rebuilt healthy bone tissue. Of course, in this preliminary 
stage, in our model we assume that there is the possibility 
to transport nutrients in the necrotized area: we are aware 
of the fact that a theoretical effort is needed to describe 
also this aspect of considered phenomena. Indeed, in the 
present model, we neglect effects related to a transient 
phase, considering a constant and continuous supply of 
nutrients and that the process of cells migration has been 
already completed. However, a possible generalization of 
the biological aspects may include the effects of nutri-
ent concentration, e.g., oxygen, and glucose (as the most 
important factors for cell survival) and the migration of 
actor cells, as described in George et al. (2018a).

Fig. 15   Normalized mass density in nonuniform tension test with the nonlocal instantaneous model of stimulus. a intermediate stage; b final 
stage

Fig. 16   Setup of the healing process under the extension test



www.manaraa.com

1658	 I. Giorgio et al.

1 3

7 � Conclusions and perspectives

This paper is dedicated to the preliminary study of the poten-
tial descriptive capacities of a novel diffusive stimulus model 
aimed to describe the remodeling process in bone tissues. 
We have compared this novel model with a previously intro-
duced one (see Lekszycki and dell’Isola 2012), in which the 
biological stimulus, which already had a nonlocal nature, is 
instantaneously perceived in the neighborhood of the site 
of its production. The biological stimulus, indeed, plays a 
relevant role in the feedback control process governing bone 
remodeling and the problem of modeling its generation, its 
transmission, and its effects is of great relevance.

We are aware of the complex nature of all phenomena 
occurring in the bone remodeling process. There are, most 
likely, many different concurring biomechanical processes 
which occur at different length scales and which determine 
the macroscopic behavior of bone tissues. We are not sur-
prised by observing this complexity: indeed, vertebrates 
were evolved about 525 million years ago. The synthesis 
of bone tissue caused, most likely, the Cambrian species 
explosion, which consists, in practice, in the enormous 
organism diversity which is observed nowadays on Earth. 

The subphylum Vertebrata consists of at least 69,276 spe-
cies (those which are presently described). In 525 million 
years evolution could try several methods for controlling 
bone growth and, most likely, many of these mechanisms 
currently coexist in living bone tissues. Again one should 
not be surprised if (1) many different microscale feedback 
growth control systems are being described in the literature 
and (2) a macroscopic simplified description of all of them 
is possible. Together with Darwin we share the belief that 
evolution may produce the coexistence of different organs 
and biological mechanisms collaborating synergistically for 
a common aim.

In the described spirit we discuss in this paper to model, 
at a suitably large scale, the transmission of biological stimu-
lus in bone tissue as a phenomenon occurring in space–time. 
For the sake of simplicity, we use the standard diffusion 
equation, i.e., the equation which is sometimes called Fou-
rier’s equation for the heat or Fick’s equation for the con-
centration of chemical species in a fluid. We are aware of the 
debate concerning the physical plausibility of this equation: 
we will explore in the future if the correction proposed by 
Cattaneo to Fourier equation can have a biological applica-
tion in the present context.

Fig. 17   Normalized mass density. a initial stage; b bone growth in the healthy zone; c growth of new bone in the necrotic zone; d final stage
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Here, we remark that, obviously, the integral formula-
tion introduced in the previous papers (see Lekszycki and 
dell’Isola 2012; Giorgio et al. 2016) can be easily gener-
alized to include the case treated here: it is sufficient to 
introduce there a suitable time-dependent Green’s function. 
Another important step in our modeling procedure was to 
assume that (1) the generation of stimulus is controlled (we 
repeat once more: at macroscopic level!) by the deformation 
energy density, (2) the stimulus resorption is determined 
by a standard decay process. The most important feature 
of the novel model introduced consists in the introduction 
of a ‘characteristic time’ which governs the time needed to 
the stimulus to travel inside the bone tissue before being 
resorbed. Both the present model and that used in Lekszy-
cki and dell’Isola (2012), Giorgio et al. (2016) are nonlo-
cal: however, the model introduced in the just cited papers 
neglects the (obviously important) time delay occurring 
between the signal (stimulus generation) and the action 
which is determined by it. Obviously, also the range of 
validity of the novel proposed model is limited. This range 
is defined by the assumed hypotheses which can be summa-
rized as follows. From a purely mechanical point of view, 
bone tissue is represented as a microstructured medium 
whose behavior is assumed to be isotropic, nonlinear elastic 
and viscous. In the framework of poroelastic materials, the 
additional kinematical descriptor of the microstructure is 
the change of the effective volume of the fluid content per 
unit volume. From a biological point of view, the stimulus 
is evaluated at a macroscale without formulating explicitly 
its dependence on the signaling factors which act at a micro-
level. As a result, the stimulus is assumed to be depended on 
a scalar quantity as the strain energy density which averagely 
represents the effects of phenomena (e.g., velocity of fluid 
flow at the lacuno-canalicular system, damage due to fatigue 
and micro-cracks onset etc.) at small scales. Moreover, the 
spatial density of sensor cells is assumed to be proportional 
to the apparent mass density of bone tissue; the spatial den-
sity of actor cells depends on the porosity of bone tissue 
according to the parabola-like law (see Fig. 2). Finally, bio-
logical migration is neglected during mass density evolution 
of bone.

In this article, the most relevant point of novelty consists 
in describing the transmission of the stimulus in a nonlocal 
time-delayed way by a diffusion model in which the stimu-
lus evolves according to a differential equation conceived to 
match its behavior as observed at a macroscale. Then, this 
new model is compared with a previously developed nonlo-
cal model of the stimulus. In this former description, the 
stimulus is defined through a convolution integral extended 
to the whole domain and it is assumed to be instantaneously 
transmitted. In the new formulation, instead, the diffusion 
differential equation allows taking into account the time 
delay due to the diffusion of the stimulus. A further point of 

novelty of this work lies in the development of a model that 
is also able to take into account the permanence of the signal 
even after the cessation of the stimulus for a limited period 
of time (Sims and Martin 2014; Crane and Cao 2014) due to 
the presence of the sink term (reabsorption of the signal) in 
the diffusion Eq. (12) according to the definition of Eq. (15).

To make our modeling analysis more explicit and in order 
to show the performance of the introduced model, we con-
sidered some specific study cases. 1) A remodeling process 
in a physiological situation: in this process, a specimen of 
bone tissue is subject to different external loads determining 
its extension. 2) A healing process, in which a specimen of 
bone tissue partially necrotic in a large area is loaded with 
a mechanical load. In the introduced model the necrosis is 
described by assuming that the generation of stimulus is 
blocked. Mathematically, this is implemented by assuming 
that in the source term of the postulated diffusion equation 
for biological stimulus a coefficient depending on osteocyte 
concentration appears. This coefficient is assumed to vanish 
when osteocytes are absent. In a healthy bone a mechanically 
active material particle is also biologically active because of 
its ‘equipment’ of osteocytes: in this situation, it can pro-
duce a source of stimulus. We assume that this source of 
stimulus is proportional to the local density of deformation 
energy measured. In this first stage of our investigations, we 
wanted to avoid the introduction of complicated further evo-
lution equations. We expect that such a more sophisticated 
model may be needed to describe carefully enough clinical 
cases. However, we want to build our model step by step 
by checking its performance and by initiating a scientific 
debate. Therefore, presently and for the presented numeri-
cal simulations we conjecture that the density of osteocytes 
can be assumed to be proportional to the bone density, in 
the physiological case. Necrosis, in this context, has to be 
described by a total absence of biological stimulus source.

A necessary condition for having postulated a model 
whose true applicability can be assessed consists in its 
capacity to describe: (1) physiological remodeling pro-
cesses, including the attainment of homeostatic equilibrium; 
(2) regeneration of necrotic tissues, which are in contact 
with living bone tissues.

To verify such necessary condition we have considered, 
at first, a bone sample in the physiological case and in a 
uniform tension test: different values of the load are applied 
and different evolutions of the bone mass density field are 
simulated. The obtained numerical results demonstrate that 
for uniform tension tests: (1) in a suitable range of values 
of the external loads, they produce a physiological homeo-
static equilibrium for bone tissues having a certain poros-
ity, (2) for external loads having greater values than those 
in the previously determined range one can observe the 
growth of cancellous bone, (3) for lower load values one 
observes resorption. As a second test, we have considered 
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a nonuniform load: more specifically we have considered a 
linear distribution of the externally applied mechanical load. 
We have observed a consequent nonuniform evolution of the 
bone mass density: it is dictated by and parallels the calcu-
lated field of the deformation energy density in all the subse-
quent equilibrium configurations calculated in the evolution-
ary process. Finally, we have simulated the healing process 
after necrosis. The results which we have obtained in these 
simulations are very promising and indicate, in our opinion, 
that the proposed model deserves to be further developed. 
Indeed, the numerical results provide a prediction for the 
bone mass density evolution which is qualitatively very close 
to what has been experimentally observed. In our numerical 
simulations we have clearly distinguished three character-
istic growth and remodeling stages: (1) initially, the bone 
tissue is remodeled in the healthy zone only and a biological 
stimulus is produced there; (2) subsequently, a new bone tis-
sue starts to be synthesized in the necrotic zone (where the 
osteocytes are supposed to be initially not active, i.e., either 
absent or died and where the present not living part of the 
bone tissue supplies, however, the mechanical support to 
remodeling process); (3) finally, the whole specimen of bone 
tissue acquires again its full functionality: indeed, after the 
formation of new bone tissue, new osteocytes colonize anew 
what had been a necrotic tissue.

We can, therefore, conclude that the behavior of the pro-
posed model does mimic indeed, from a qualitative point of 
view, the actual remodeling process which can be observed 
in living bone tissue. Moreover, the introduced model does 
explain the coexistence of different levels of bone poros-
ity with different externally applied load. In the immediate 
future, we plan to try to get a deeper insight in the bone 
remodeling process by studying the most efficient tuning of 
the introduced physiological parameters to get some quan-
titative coincidence with experimental evidence. Indeed, 
while the selected results are fully demonstrating the poten-
tiality of the proposed diffusive model, it is clear that its 
further validation is necessary.
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